

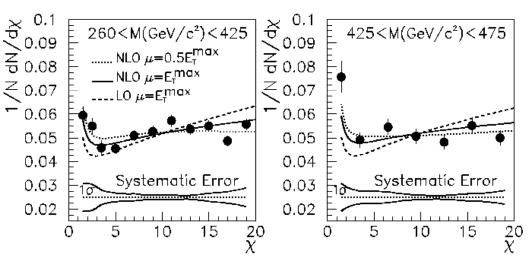
- QCD Dijets
 - Why Study them?
 - Analysis strategy
- Dijet Asymmetry
 - Cuts
 - results
- To Do

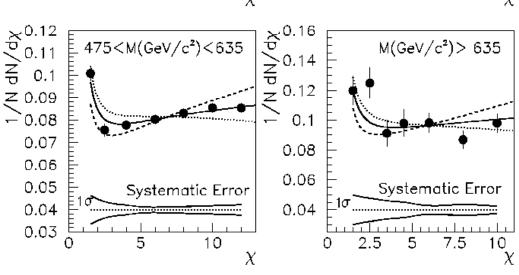
Why study them?

- Good test of QCD
 - Dijet final states arising from qq, qg, gg interactions
 - Angular distributions for these processes predicted to be similar -> ~roughly independent of pdf's
 - Parton-parton scattering peaked at small scattering angles/ new physics (eg compositeness) more isotropic

Variable definitions

- We want to look at dijet angular distributions
- To compare with theory, define the following varibles
- Leading dijet mass:
 - $M_{jj}^2 = 2E_{T_1}E_{T_2}(\cosh(h_1-h_2)-\cos(j_1-j_2))$
- Leading dijet c variable
 - $c = e^{|\eta_1 \eta_2|} = (1 + \cos q^*)/(1 \cos q^*)$




Results from Run I

PRL 80 666 (98)

Systematic Error:

•Largest systematic uncertainty from eta dependence of calorimeter energy scale (~2% level)

- Analysis Strategy
 - Systematic Uncertainties
 - Jet Energy Scale h dependence
 - Jet Resolutions
 - Trigger Acceptance
 - Cut acceptances

Analysis Strategy

- Analysis Checklist
 - Use JES from Photon-Jet events
 - Carry JES into full h region using dijets
 - Measure jet resolutions
 - Smear MC with jet resolutions
 - Calculate trigger/cut acceptance from MC
 - Make angular distributions vs. C for M_{jj} regions
 - Compare with MC predictions of different $L_{\mathbf{c}}$ values

Dijet Asymmetry

- Select exclusive dijet events with one jet in central region (h < 0.7) (central jet) and the other jet anywhere (probe jet)
- Defined as:
 - A = (E_Tprobe E_Tcentral)/(E_Tprobe + E_Tcentral)
- Then relative response of probe jet response is:
 - $R = E_T^{probe}/E_T^{central} = (1+A)/(1-A)$
- Can use this to:
 - Examine response h dependence in jets
 - Carry calibration into forward eta regions

Data Sample and Cuts

Data Sample

- Alexanders p10.15.01 QCD stripped sample
- Using triggers
 - J3CJT7
 - 2JT_LO
 - JT_125TT
 - JT_95TT
 - JT_65TT
 - JT_45TT
 - JT_25TT
 - zero_bias
 - min_bias

Data Sample and Cuts

Data Cuts

Event Cuts

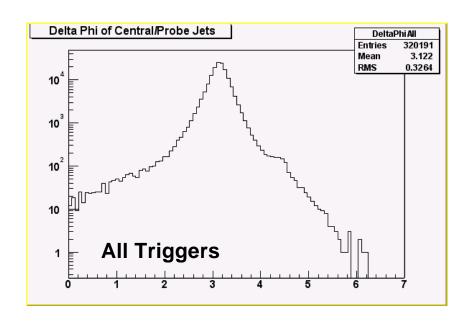
- MET > 0.7 * jet.PT[0])
- if (JCAL.JEthresh > 2000)
- Vertex must have at least 3 tracks
- |zvertex| < 50.0 cm
- Two and only two jets passing jet quality cuts below
- Df between the two jets must be within p +- 0.5 rads

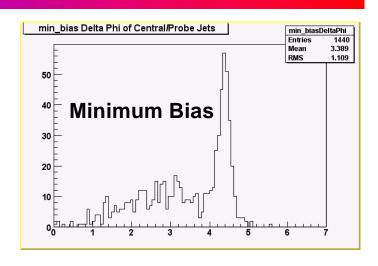
Jet Cuts

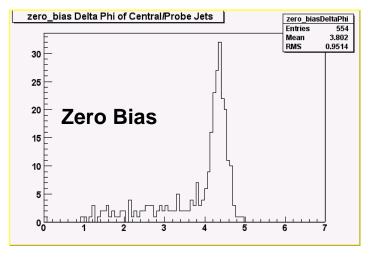
- HotFraction (highest ET cell)/(2nd highest cell) < 10
- 0.05 < EMfrac < 0.95
- CHfrac < 0.4
- Jet N90 (# cells containing 90% of the jet energy) > 1
- Jet E_T > 8.0 GeV

Data Sample and Cuts

- Jet Threshold Cuts
 - Central Jet Energy must satisfy:

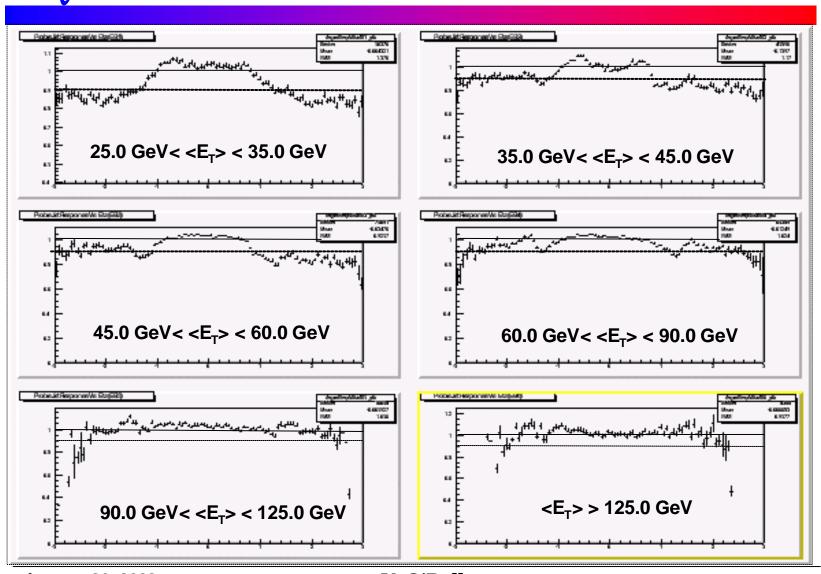

Note: These thresholds are just an estimate. They should come from L1/L2/L3 turn on curves

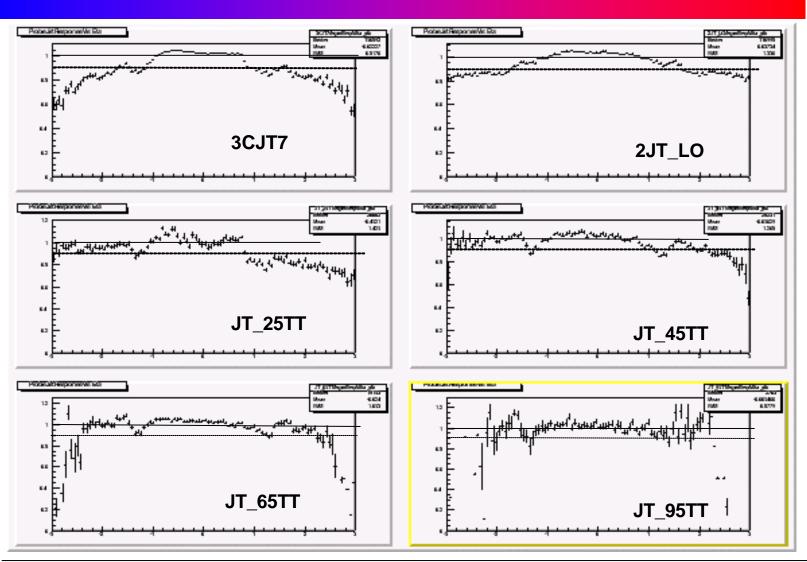

Trigger	Jet Threshold
3CJT7	50.0 GeV
2JT_LO	10.0 GeV
JT_125TT	150.0 GeV
JT_95TT	100.0 GeV
JT_65TT	80.0 GeV
JT_45TT	60.0 GeV
JT_25TT	50.0 GeV
zero_bias	10.0 GeV
min_bias	10.0 GeV



Minimum Bias/Zero Bias

Minimum Bias and Zero Bias triggers are not clean dijet events – the rest (jet triggers) look good.



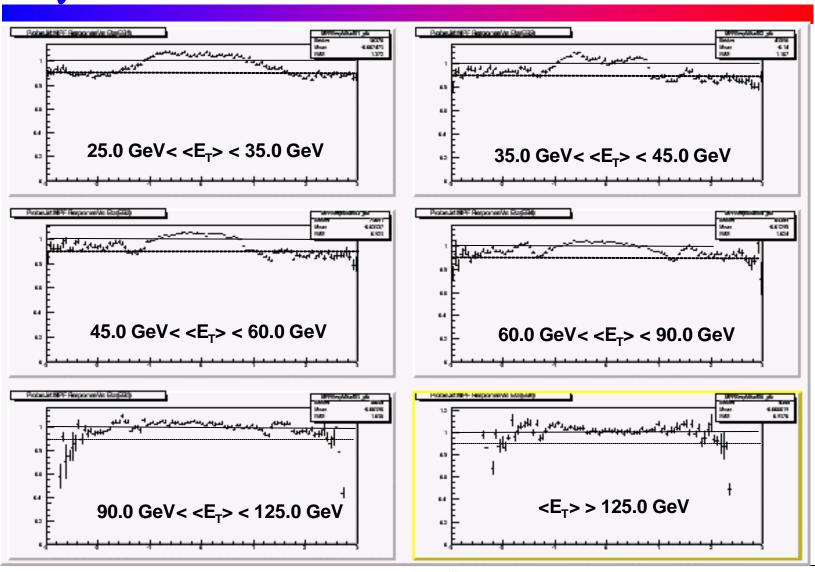


Probe Jet Response

Probe Jet Response by Trigger

MPF method

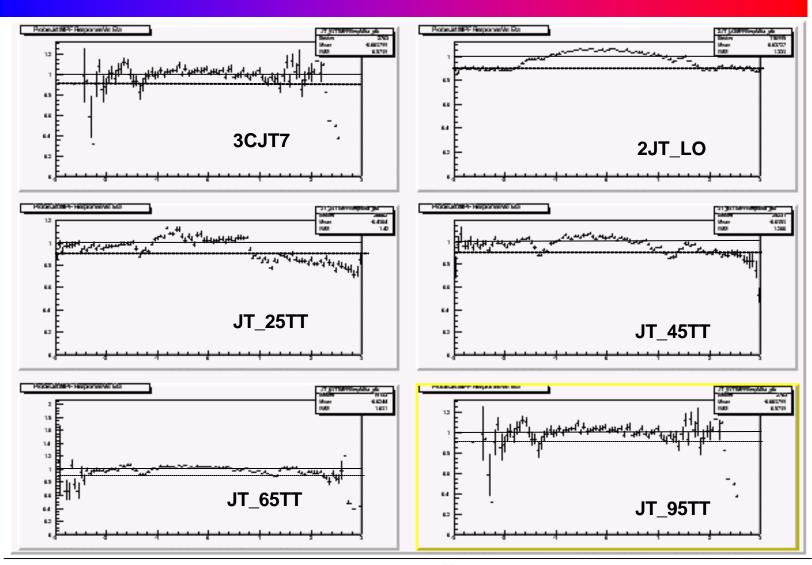
 Can also use dijet events and calculate the Missing E_T Projection Fraction (MPF)


• MPF =
$$P_T \cdot \hat{n}_T^{\text{probe}}$$

 $E_T^{\text{probe}} + E_T^{\text{central}}$

Probe Jet response = (1-MPF)/(1+MPF)

Since we are using entire calorimeter to balance P_T, this method is insensitive to out-of-cone showering effects



Dijet MPF Response

Dijet MPF Response by Trigger

Dijet Asymmetry

- Can also learn about the jet energy resolution from dijets
 - Making the approximation:
 - $E_T^{probe} = E_T^{central}$ and $S(E_T^{probe}) = S(E_T^{central})$, then the width of the asymmetry distribution is directly proportional to S_{ET}/E_T .
 - This should be calculated for different h ranges.

Dijet analysis: Next Steps

- Can also learn about the jet energy resolution from dijets
 - Making the approximation:
 - $E_T^{probe} = E_T^{central}$ and $S(E_T^{probe}) = S(E_T^{central})$, then the width of the asymmetry distribution is directly proportional to S_{ET}/E_T .
 - This should be calculated for different h ranges.
- Trigger efficiencies fold these in
- Monte Carlo